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“[... T]here is little disagreement about the truth of the theory—indeed, it would not be an exag-

geration to say that the theory of probability is commonly regarded as though it were necessarily

true.” Humphreys [1985], p. 568.

1 Introduction

Discontent with Kolmogorov’s axioms? Surely discontent with The Axioms is as insane as

discontent with The Truths of Logic. Indeed, some have argued that Kolmogorov’s axioms

are logic, the logic of partial belief, a natural—and the only—generalisation of classical logic,

the logic of full belief (e.g., Jaynes [2003]).

Of course, many philosophers and logicians have expressed much discontent with clas-

sical logic. Admittedly, many philosophers and logicians are perhaps not quite bastions

of sanity; however, their reasons for revising classical logic are perfectly sane. There are

significant issues with vagueness, indeterminacy, inconsistency, and the like that all cause

classical logic problems. Any such revision of classical logic can underpin a corresponding

revision of the probability axioms. The essay, Probability and Non–Classical Logics, in this

volume, focuses on such non–classical probability theories and reasons for adopting them.

This chapters focuses mostly on other sources of discontent. Discontent with Kolmogorov’s

axioms does not necessarily stem from discontent with classical logic.

Even though it is orthodoxy that Kolmogorov’s axioms are correct, and perhaps even nec-

essarily correct, they appear to be incompatible with the most common so–called “interpreta-

tions” of probability. Finite actual frequencies, infinite hypothetical frequencies, propensities,

degrees of entailment, and even rational partial belief all appear to fail to satisfy Kolmoro-

gov’s axiomatisation of probability. Or, to put it from another perspective: Kolmogorov’s
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axioms appear to fail to satisfy each of the most common theories of what probabilities are.

Each of these failures is a source of possible discontent. In addition to this, there are reasons

for discontent that seem to be independent of any interpretation of probability, and there is

reason for discontent from the sciences too.

This paper will survey the most common reasons to be discontented with Kolmoro-

gov’s axiomatisation. Along the way, in the axiomatisation’s defence, I’ll discuss possible

responses that one can make to each expression of discontent. First, though, we should be

clear as to what all the discontent is about.

2 Kolmogorov’s Axiomatisation of Probability

Let Ω be a non–empty set, over which F is an algebra. Let P be a function from F to R. If

P satisfies the axioms:

(K1) P(A) ≥ 0

(K2) P(Ω) = 1

(K3) P(A ∪ B) = P(A) + P(B), if A ∩ B = ∅

for every A and B in F , then P is a probability function, and (Ω, F , P) is a probability space.

These axioms are often called non–negativity, normalization, and finite additivity, respectively.

If F is a σ–algebra, finite additivity is extended to so–called countable addivity:

(K3’) P

(
i=∞⋃
i=1

Ai

)
=

i=∞

∑
i=1

P(Ai)

where the Ai are mutually disjoint.

Kolmogorov then adds a definition of conditional probability to the above axioms:

(CP) P(A|B) = P(A ∩ B)
P(B)

, where P(B) > 0

for every A and B in F . I shall call K1–3’ + CP Kolmogorov’s axiomatisation of probability.

Before we move on to reasons why one might be unhappy with Kolmogorov’s axioma-

tisation, it will be worthwhile to pause for a moment, and think about the relation between

the formal theory of probability and the concept of probability.

2



3 Where to Place the Blame?

Komogorov’s axiomatisation is quite remarkable in many ways. It situates probability theory

as a branch of a more general mathematical theory, the theory of measures. And its three

simple axioms have resulted in numerous remarkable theorems, which have countless im-

portant applications throughout the sciences. It is simultaneously incredibly simple, unified,

and powerful. And yet, there are reasons to be dissatisfied with it nonetheless.

It seems, prima facie, strange to be discontented with a piece of mathematics. One can be

discontented with all sorts of things—politicians, the dinner menu, software, society, etc.—

but these are all things that are changeable in some sense. The facts of mathematics, on the

other hand, are apparently unchangeable. Being discontented with a piece of mathematics

would therefore seem to be on par with wishing that “up” was “down”.

However, discontent with mathematics can and has led to significant progress. Mathe-

maticians have expressed discontent with their theories for a variety reasons. They sought

the Zermelo–Fraenkel axioms to avoid the inconsistency of naïve set theory. And then

there was—and still is—the Axiom of Choice controversy, with some arguing we should

accept it based on its necessity for several important theorems, and others arguing that we

shouldn’t because it leads to counterintuitive objects or that it isn’t acceptable on construc-

tivist grounds.

Such expressions of discontent arise when the truth of the relevant mathematics is clearly

in question. Inconsistent set theory cannot possibly be true (according to classical logic), and

there was a priori epistemic uncertainty surrounding the Axiom of Choice. Sometimes the

uncertainty surrounding the mathematics in question has an empirical or “external” flavour

to it. Perhaps the clearest example of this comes from Geometry. Initially, the Parallel

Postulate was called into doubt, as an axiom, because of its lack of self–evidence. Moreover,

once it was realised that the postulate is false for the actual physical space that we happen to

inhabit, it was quickly rejected, and so–called non–Euclidean geometries quickly flourished.

As we’ll see, the reasons for discontent with Kolmogorov’s axiomatisation are often ex-

ternal in this way—i.e., they come from particular applications of the theory. Applications

include capturing the epistemic norms of graded belief, the behaviour of chance, and statisti-

cal reasoning. It is when the axiomatisiation is used in these applications that problems arise

and discontent may ensue. Just as the truth of the Parallel Postulate for our actual physical

space was called into question, we can ask if, e.g., countable additivity is true for the epis-

temic norms of peoples’ degrees of belief, or if the definition of conditional probability is

true for conditional physical chance, etc.
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In any particular application of Kolmogorov’s axiomatisation, it is important to keep in

mind what exactly the link is between the formalism and the target of the formalism. I

began this article somewhat dramatically, with an analogy between probability and logic.

This is a useful analogy to keep in mind as we consider various sources of discontent with

Kolmorogov’s axiomatisation. As already mentioned, the sources of discontent often stem

from particular applications of the axioms. In any such application, there has to be some

link between the purely abstract axioms and the target of the application. For example, we

will often want P to represent an agent’s degrees of belief. Call such a link a bridge principle.

Often, when things go wrong, there are two places where the blame can be laid: with the

bridge principle in question or with the axiomatisation.

Compare this with a potential source of discontent with classical logic. According to

classical logic, A ∧ ¬A entails everything—this is known as explosion. Why is explosion

bad? Suppose a person has inconsistent beliefs. If classical entailment models the normative

closure of belief, then that person ought to believe everything. Some authors have concluded

from this absurdity (along with other considerations) that we need to revise classical logic,

and adopt some non–classical logic, in which explosion does not hold (e.g., Meyer [1971],

pp. 814–5). However, as Harman has pointed out, we could equally well question the bridge

principle involved: that classical entailment models the normative closure of belief (Harman

[1986], p. 6).

Even when we’re sure that the axioms deserve the blame, it may not be clear which

axiom deserves that blame. No axiom is an island, entire of itself; the axioms work in

tandem to produce the results of Kolmogorovian probability theory—whether those results

are preferable or not. And so when trouble arises, more than just one axiom can often be

blamed. Moreover, the blame can even be placed with something that the axioms presume—

e.g., that probability values are real numbers, that the objects of probability are sets, that

they form an algebra, etc.

Finally, there is a third place where the blame can be laid: with the application itself.

As we’ll see, some interpretations of probability have been criticised for not satisfying Kol-

mogorov’s axiomatisation. Is this a problem for the interpretation, or for the axiomatisaion—

or for the bridge principle that links them? It’s hard to say, but as we’ll see, almost every

interpretation has some degree of discomfort with Kolmogorov’s axioms—even finite fre-

quentism!
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4 Discontent with Countable Additivity

Consider a fair lottery with denumerably many tickets. Since the lottery is fair, each ticket

has equal probability of being drawn. But there are only two ways in which this can happen,

and on both ways, trouble looms. On the first way, each ticket has some positive probability

of winning, and any positive probability added to itself denumerably many times is (much!)

larger than one, and so a violation of the axioms. On the second way, each ticket has zero

probability of being drawn. Zero added to itself denumerably many times is zero, which is

less than one, and so also a violation of the axioms. It’s a case of too much or too little: on

both ways of the lottery being fair, the probability that some ticket is drawn is either greater

than one or less than one, and so there is a violation of the axioms. It seems, then, that

Kolmogorov’s axiomatisation rules out—a priori—the possibility of a fair, countably infinite

lottery. (Incidentally, the problem is reminiscent of Zeno’s Paradox of Plurality. See e.g.,

Salmon [2001], pp. 13–15.)

What’s causing the problem? The argument—originally due to de Finetti [1974]—is typ-

ically used as an objection to K3’, the axiom of countable additivity. However, one might

also be use it to object to K2, the axiom of normalisation, which is clearly involved in the

generation of the problem. Both of these options would be to blame the axioms. One can

also try to blame the application. Some have argued that there is no problem here because

there is no physical device that could set up such chances (Spielman [1977], Howson and

Urbach [1989]). However, a response to this is that it doesn’t matter whether such a physical

device exists or not; a rational agent should be allowed to assign equal credence to each

ticket winning (Williamson [1999]).

Can one blame the bridge principle? Yes. To set up the problem in a complete and

precise way, one typically has an algebra that includes denumerably many events, one of

each corresponding to each of the denumerably many tickets winning. One can then prove

that there is no uniform probability distribution over those events. An alternative way to

approach the problem, and so an alternative bridge principle, would be to start with a finite

algebra, and a uniform distribution (which is unproblematic), and let the algebra increase to

any arbitrary–but finite–size. (Jaynes [ref].) This is an unconventional line of thought, but

it shows that there is a way to question the bridge principle involved, i.e., how one should

model the situation (whether it be chances or someone’s ideal credences) in the mathematics.

Another way to blame the bridge principle is to say that, in this particular situation, there

is no bridge principle between our credences and Kolmogorov’s axioms. As Bartha [2004]

points out, one may argue that we don’t have real–valued degrees of belief in this situation
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(pp. 306–7). If, instead, we only have relative probabilities2, then one can maintain that

the axiom of countable additivity is true because it doesn’t apply in the case of de Finetti’s

lottery (pp. 309-10). (See Bartha [2004] for a more detailed discussion and constraints on

relative probabilities.)

5 Discontent with Finite Additivity

Although on much safer ground, finite additivity has its discontents too. The structure it

imposes on probability makes it difficult for probability to represent states of pure ignorance.

Consider a situation in which we are reasoning about whether some event, E, will occur

or not. If we know nothing about E, we have no evidence for or against it, we have no

convictions or intuitions about it, then it it seems to be unreasonable to presume E to be

more likely than ¬E, or vice versa. So if we are to assign probabilities to E and ¬E, we have

to give them equal probabilities. It then follows, from finite additivity, that they both have to

be given a probability of 1/2.3 Compare this with a situation in which we know lots about

E and ¬E—e.g., they are the outcomes of a fair flip of your lucky dime. In both situations,

the probability calculus represents you as equally confident of E. And yet this seems not to

be so.

Worse still is that the above reasoning can lead to paradox. If a cube factory produces

cubes and those cubes can have side lengths between 0 and 1m, what is your probability that

the next cube has its side length between 0 and 1/2m? Either it has this side length, E, or it

does not, ¬E. By the reasoning above, the probability of E is therefore 1/2. But if the cube

factory produces cubes and those cubes have face areas between 0 and 1m2, what is your

probability that the next cube has its face area between 0 and 1/4m2? Here the reasoning

is slightly different, but similar enough. It seems there are four events for which we cannot

suppose any to be more probable than any other: the face area is between (i) 0 and 1/4, (ii)

1/4 and 1/2, (iii) 1/2 and 3/4, and (iv) 3/4 and 1. If these all have equal probability, then,

by finite additivity, they all have probability of 1/4. But now we have a contradiction, for

E ≡ (i) (a side length of 1/2 is the same as a face area of 1/4), and yet we have given them

different probabilities. This example is taken from van Fraassen [1989], and is representative

of a larger class of paradoxes—see also e.g., Keynes [1921] and Jaynes [1973].

As usual, there are many places where the blame for these problems can be laid, and

2Quick explanation of relative probabilities here.
3From equal probabilities, we have P(E) = P(¬E); from finite additivity we have P(E) + P(¬E) = 1; and

putting these together we get: 2P(E) = 1, 2P(¬E) = 1, and so P(E) = 1/2 and P(¬E) = 1/2.
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one place that can be blamed is finite additivity. If we drop finite additivity, then from

P(E) = P(¬E) it does not follow that P(E) = P(¬E) = 1/2. It is now permissible that, say,

P(E) = P(¬E) = 0. And perhaps that is the right probability assignment in a case of total

ignorance. If probability is credence and you have no evidence or prior knowledge, then

there is nothing to lend any credence to E or ¬E; you therefore have no credence in E or

¬E. Assigning vacuous probabilities to all of the possibilities for which you are completely

ignorant about avoids the above contradiction, and it also distinguishes you from the person

who is well–informed about the options, but happens to have uniform credences.

One popular theory that drops finite additivity is Dempster–Shafer theory, sometimes

called the theory of belief functions (see e.g., Shafer [1976]). See also Ghirardato [2001] for

reasons for adopting non–additive probabilities due to cases of ignorance.

6 Discontent with Conditional Probability

According to Kolmogorov’s definition of conditional probability, P(A|B) is undefined when-

ever P(B) = 0. As many authors have noted there are countless situations where this appears

to be false.

Suppose we choose a point randomly from the surface of the Earth, where we assume the

Earth is a perfect sphere. What is the probability that the point is in the Western Hemisphere,

given that it is on the Equator? The answer is surely 1/2, and yet according to Kolmogorov, it

is undefined because the probability of the point being on the Equator is 0. (In this example,

unconditional probability corresponds to relative area of the surface of the Earth. The event

of the point being on the Equator gets a probability of 0 because the Equator is a line and

therefore has area of 0.)

What’s the cause of this problem? The natural response is that the problem is due to the

overly restrictive definition of conditional probability. Indeed, Kolmogorov himself was fully

aware of this sort of problem and developed are more general, and complicated, definition

of conditional probability (Kolmogrov [1933], p. X). However, this complicated definition of

conditional probability runs into problems of its own (see e.g., Seidenfeld [2001] or Hájek

[2003], p. X).

Other authors have developed alternative axiomatisations that take conditional proba-

bility as primitive and define unconditional probability in terms of it (e.g., Rényi [1955],

Popper [1959], pp. X–Y). Such axiom systems allow P(A|B) to be given a definite value

even if P(B|Ω) = 0, which in these contexts is typically understood as the unconditional
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probability of B.

Another common response to the problem is to argue that in cases like the Equator

example, P(B) is not really equal to 0. This response places the blame with the assumption

that probabilities are real–valued, and so I’ll postpone discussion of it until section 7, where

I discuss discontent with this assumption more generally.

Also according to Kolmogorov’s definition of conditionality probability, P(A|B) is unde-

fined whenever the unconditional probabilities in which it is defined are undefined. What

is the probability that Joe get “heads”, given he flips a fair coin? Answer: 1/2. But what

is the probability that Joe flips a fair coin? Answer: Who knows?! Whether Joe flips the

coin may be a matter of free will, in which case there may be no chance associated with it

(Hájek [2003], p. X). Never mind matters of free will, there just may be no unconditional

probability of Joe flipping the coin. There may be a conditional probability of Joe flipping

given that someone asks Joe nicely to flip it, or pays him, or if he is in a coin flipping mood,

or if he has sworn to never flip coins again, etc. But a free–floating unconditional probability

of Joe flipping the coin? It’s not at all clear that such a probability exists; and even if it does,

if by probability we mean rationally required degree of belief, then there may nevertheless

be no such thing anyway. It seems you can have a conditional degree of belief of 1/2 that

the coin lands “heads” given Joe flips the coin fairly and not be rationally required to have

some degree of belief that Joe flips the coin fairly.

The problem seems to be due to Kolmogorov’s definition of conditional probability in

terms of unconditional probability. Perhaps the most natural response, then, is that we

should axiomatise conditional probability directly, instead of defining it in terms of uncon-

ditional probability. This approach also seems to have the advantage of also solving the

problem from the Equator example. Hájek, for example, concludes that we should move to

an alternative axiom system that takes conditional probability as primitive (Hájek [2003], pp.

315–6). Unfortunately, many (if not all) such alternative axiom systems don’t really solve the

problem. Many of the alternative axiom systems require that probabilities like P(I flip a fair

coin | I flip a fair coin or I don’t) be defined. But for the same reasons as before, it seems

there is intuitively no such probability. The problem is therefore not Kolmogorov’s alone

and it seems that something more drastic has to be done.

So far I have been focusing on problems where the conditional probabilities are unde-

fined when they should be defined. But the opposite also happens. Just as problematic are

cases where conditional probabilities are defined when they should be undefined, or defined

in some other way. For example, according to the propensity interpretation of probability,
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P(E|C) is the propensity of C to produce, or cause, E. However, Humphreys’ [1985] has

shown that in many situations Kolmogorov’s axiomatiation requires that if P(E|C) has a

value, then so does P(C|E). This seems strange since presumably causes must precede ef-

fects, and yet Kolmogorov’s axioms seem to tell us that an effect can have a propensity to

produce its cause. Surely that is wrong: the lighting of a match in the evening has a propen-

sity to burn down the factory at night, but the burning down of the factory at night doesn’t

have a propensity to light the match in the evening. This problem for Kolmogorov’s under-

standing of conditional probability for the propensity interpretation is known as Humphreys

Paradox. The standard response to this problem is that it is trouble for the propensity

interpretation—i.e., the application gets the blame. Humphreys’ own conclusion, however,

is different: he blames the axiom system (Humphreys [1985], 568–9).

7 Discontent with Positive Real Numbers

When faced with undefined conditional probabilities or infinite lotteries, there is yet a an-

other aspect of the axioms that we could blame: the assumption that probabilities are real

numbers.

In both situations, we want a probability value that is really small, but not 0. The problem

with the real numbers is that there is no number that is small enough but not so small that

it is 0. This is easiest to see in de Finetti’s lottery example: as soon as the probability of

each ticket winning is greater than 0, then no matter how small that number is, the total

probability will sum to more than 1. One response, then, is to give up on the real number

system, and move to a richer system that has numbers that are smaller than every real

number, but that are greater than 0. Such numbers are called infinitesimals, and the most

cited number system that contains them is the system of hyperreals (e.g., Robinson [1966]).

If probability values are hyperreals, then we can say that each ticket in de Finetti’s lottery

has some infinitesimal probability of winning (e.g., Bartha and Hitchcock [1999]). Similarly,

we can say that the event of choosing a point on the Equator has infinitesimal probability,

and so the conditional probability of choosing a point in the Western Hemisphere given the

chosen point is on the Equator doesn’t go undefined (e.g., Lewis [1980], p. 267–8). It would

seem that infinitesimals provide an elegant solution to two different problems.

In fact, there is even more good news for infinitesimal fans. It seems to be a dictum of

rationality that one should be open minded: one should not assign zero probability to any

event that one considers to be possible. This principle often goes by the name of Regularity.
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According to Kolmogorov’s axioms, though, it is mathematically impossible to satisfy this

principle when dealing with uncountably many events (e.g., Hájek [2003], pp. 281–2). One

is forced to assign zero probability to uncountably many events that one considers to be

possible. However, this is not true if probability values can take on infinitesimal values.

So infinitesimals seem to solve three distinct sources of discontent with Kolmogorov’s

axioms. (Moreover, there is a sense in which adopting infinitesimals does not amount to a

revision of the axioms, for the hyperreal system is a non–standard model of the reals. One

could read Kolmogorov’s axioms as leaving the model of the reals as unspecified, in which

case we don’t really have a case of discontent with the axiomatisation.) Infinitesimals have

their problems, though. It’s impossible to name one of them, for example. So when we

say that each ticket in de Finetti’s lottery has an infinitesimal probability of winning, which

infinitesimal is it? It’s strange that we can’t answer that question (see Hájek [2003], pp. 292–3

for more details). More seriously, though, is that even if we allow probability values to be

infinitesimals, we are still forced to assign zero probability to possible events (Williamson

[2007]).

Instead of moving to a richer number system, some may want to move to a poorer number

system. According to Kolmogorov’s axiomatisation, P(A) = 1/π is a legitimate probability

assignment—i.e., there are probability functions that make such an assignment. Those who

believe in the finite actual frequency interpretation of probability have to disagree. Nothing

can occur with a 1/π relative frequency in a finite number of trials, and so P(A) = 1/π

cannot be a legitimate probability assignment. Finite frequentists have to insist that P is a

function from F to Q, and not R. (Of course, this point is often used as an objection to finite

frequentism (e.g., Hájek [1997], pp. 224–5)—but as usual, the sword can cut both ways.)

So far I have been discussing discontent with the assumption that probability values are

real numbers. Kolmogorov’s axiomatisation says something stronger, though: the axiom

of non–negativity, KP1, makes sure that they are positive real numbers. Why the ban on

negative numbers? One reason is that it is not at all clear how one would interpret them: if

Pr(A) = −0.5, should we expect A to happen about minus fifty percent of the time? (!)

Despite our inability to make sense of negative probabilities, they nevertheless appear in

the sciences. They appear in quantum mechanics, and even in classical physics (see Muck-

enhaim et al. [1986]). They also make an appearance in financial mathematics (Haug [2007],

Burgin and Meissner [2011]) and machine learning (Lowe [2004]). Negative probabilities

typically only appear as intermediate steps in calculations—much like 3 = 4 + (−1)—or as

probabilities of unobservables. However, see Burgin [2010] for a frequency interpretation of
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negative probabilities. Some physicists have sought ways to avoid negative probabilities by

changing their equations, without changing the physics (e.g., [ref]). This amounts to chang-

ing the bridge principle between the physics and the mathematical theory of probability.

Another source of discontent with the probability values of Kolmogorov’s axiomatisation

is that it assumes that probabilities are point values. Many authors have argued for interval

valued probabilities. For example, it seems rationally permissible to not have a point-valued

credence in all propositions. Does your confidence that it will rain tomorrow have to be

precise to infinitely many decimal points for you to be rational? Arguably, no it doesn’t.

Instead of someone having precise credences, an agent may have lower and upper bounds

on their credences—forming so–called indeterminate credences. See Walley [1991], Hájek and

Smithson [201X], and Levi [2000] for more details.

One final reason to be discontent with the probability values of Kolmorogov’s axiomati-

sation is with the very assumption that there are probability values. Fine [1973] argues that

a comparative probability axiom system (i.e., one that axiomatises “A is more probable than

B”) is more general and powerful than Kolmogroov’s axiom system.

8 Discontent with Sets and Algebras

According to Kolmogorov’s axiomatisation the objects of probabilities are sets. This imme-

diately rules out any interpretation of probability that thinks the objects are sentences, or

events, or even propositions, if propositions are not sets of something (e.g., worlds). For

these reasons, Popper thought that a formal theory of probability should make no assump-

tion regarding what the bearers of probability are:

“In Kolmogorov’s approach it is assumed that the objects a and b in p(a, b) are sets (or aggregates).

But this assumption is not shared by all interpretations: some interpret a and b as states of affairs,

or as properties, or as events, or as statements, or as sentences. In view of this fact, I felt that in

a formal development, no assumption concerning the nature of the ‘objects’ or ‘elements’ a and b

should be made [...].” Popper [1959], p. 40. [check ref.]

Popper goes on to develop an axiom system that makes no such assumptions and has the

virtue—in Popper’s eyes—that the algebraic structure of the objects of probability emerge as

a consequence from the axioms, rather than being built into them (e.g., Popper [1959], p. X).

However, some have argued that the objects of probability should not necessarily form

an algebra, or a σ–algebra, so this property should be neither built into the axioms nor a

consequence of them. For example, consider the following:

11



“A class of photographs may be such that the probability of a predominantly dark pictures is 1
2

and the probability of a grainy texture is also 1
2 . However, we may have no data on, and little

interest in, whether grainy patterns tend to be dark or not. Should we then be prevented from

using probability theory to model this sample source when designing pattern classifiers for this

problem?” Fine [1973], p. 62.

Fine’s point is that there are situations where we can assign probabilities to A and B but

not to their union A ∪ B or intersection A ∩ B. And yet Kolmogorov’s axioms, because they

require probabilities to be defined over an algebra, require these probabilities to be defined.

One alternative to the regular algebra is the Λ–field. The closure properties of a Λ–

field allow that A and B ∈ Λ, but A ∩ B /∈ Λ. An example would be Λ = {∅,

Ω, (a, b), (c, d), (a, d), (b, c)}, which could be interpreted as:

A photograph is

(a) dark colour and grainy texture

(b) dark colour and smooth texture

(c) light colour and smooth texture

(d) light colour and grainy texture

Note that the event of a photograph being dark and grainy is not in Λ, and so it doesn’t

get a probability (Fine [1973], p. 63). The neat thing about using a Λ–field is that

it only requires the introduction of events whose probabilities can be calculated from

the given probabilities using K1–K3. A downside is that it doesn’t allow us to define

many conditional probabilities that seemingly ought to be defined—e.g., we can’t say that

P(dark colour|dark colour and grainy texture) = 1.

Another alternative to the σ–field is the von Mises field, the V –field. The precise definition

of the V –field is complicated and the interested reader should see e.g., Fine [1973], pp. 64–5

for a definition. One important difference between the V –field and the σ–field is that the

former only contains events that can be measured using finite data sets. For example, for

an indefinitely long series of coin flips, the event “heads occurs only finitely often” does

not appear in the V –field (ibid). Another important difference is that the set of events with

hypothetical limiting frequencies form a V –field but not a σ–field (nor even a field). (von

Mises was a hypothetical frequentist.)

9 Conclusion

Who could be discontented with Kolmogorov’s axiomatisation of probability? The answer

seems to be: almost everyone! We have seen reasons to be discontent with almost every

12



aspect of Kolmogorov’s axiomatisation: that the objects of probabilities are sets, and that

they form an algebra of sets; that probability values are numbers, that they are real numbers,

that they are positive real numbers, that they have an upper bound, and that there are even

probability values; that probabilities are countably additive, and even that they are additive;

and finally that conditional probabilities are ratios of unconditional probabilities.

With so much discontent, how has Kolmogorov’s axiomatisation achieved its level of

orthodoxy? Perhaps the reason is that the axiomatisation is the best compromise between

many competing demands on the formal theory of probability. It’s a wonder that it has such

a wide domain of applicability to a concept that we understand so little and use so widely.

Probability is everywhere, the guide to life as some have (often) said, and indispensable to

the sciences; and yet it is notoriously difficult to analyse. It’s somewhat amazing, then, that

there is a such a successful formal theory of something that is so conceptually messy.

Nevertheless, we might wonder why probability shouldn’t go the way of geometry, with

different axiomatisations appropriate for different applications. Put this way, Kolmogorov’s

axiomatisation is the Euclidean geometry of probability. It’s still useful for many purposes

and often a good first approximation, but there are other axiomatisations that are better

suited for particular tasks.
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